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Abstract 

Progress in cell purification technology is critical to increase the availability of viable cells 

for therapeutic, diagnostic, and research applications. A variety of techniques are now 

available for cell separation, ranging from non-affinity methods such as density gradient 

centrifugation, dielectrophoresis, and filtration, to affinity methods such as chromatography, 

two-phase partitioning, and magnetic-/fluorescence-assisted cell sorting. For clinical and 

analytical procedures that require highly purified cells, the choice of cell purification method 

is crucial, since every method offers a different balance between yield, purity, and bioactivity 

of the cell product. For most applications, the requisite purity is only achievable through 

affinity methods, owing to the high target specificity that they grant. In this review, we 

discuss past and current methods for developing cell-targeting affinity ligands and their 

application in cell purification, along with the benefits and challenges associated with 
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different purification formats. We further present new technologies, like stimuli-responsive 

ligands and parallelized microfluidic devices, towards improving the viability and throughput 

of cell products for tissue engineering and regenerative medicine. Our comparative analysis 

provides guidance in the multifarious landscape of cell separation techniques and highlights 

new technologies that are poised to play a key role in the future of cell purification in clinical 

settings and the biotech industry. 

 

Keywords: cell purification, immunoaffinity, MACS, FACS, microfluidics. 

 

1. Introduction 

The ability to sort cells into distinct, mono-disperse populations is crucial to advance our 

knowledge of specific phenotypes, and explore their potential in tissue engineering and 

regenerative medicine [1, 2]. Efficient cell separation is therefore paramount in a multitude of 

fields, including personalized cell therapy [3-6], organ recellularization [7-11], diagnostics 

and disease monitoring [12-17], drug discovery [18-22], and basic cell biology [23-25]. To 

meet the growing demand for highly pure cell products, there has been considerable effort to 

develop efficient and high-throughput separation methods. As a result, a multitude of 

techniques have emerged, which are classified into separations by (i) physical characteristics 

(i.e., cell volume and shape, density, and light scatter properties or fluorescence), (ii) surface 

properties (i.e., electrical charges, hydrophobicity, etc.) and cell constituents (i.e., such as 

nucleic acids, enzymes and other proteins), and (iii) adherence/affinity features [26-29] 

(Figure 1). 

 When supplying cells for therapeutic applications, separation technologies must meet 

analytical benchmarks and regulatory compliance [30-32]. Consistency in product quality, in 

terms of cell viability and phenotype purity, is highly controlled to ensure product efficacy 
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and patient safety [33-35]. The presence of adventitious agents is also rigorously monitored, 

and all processing steps must be compatible with sterility requirements [33, 36, 37]. 

 Affinity-based separations have emerged as the main technology for cell isolation, as 

they meet the demand for high yield and purity, together with scalability and sterility [27, 

38]. After three decades of developments, however, a systematic review is needed to 

recapitulate the diversity and complexity of affinity-based cell separation technologies and 

guide new users through the selection of appropriate purification methods. To this end, we 

present a comprehensive survey of affinity-based methods for cell purification, including 

traditional chromatographic techniques to more recent, non-chromatographic or pseudo-

chromatographic systems (Figure 2, Table 1). These methods employ a variety of 

biorecognition agents for capture, ranging from traditional protein ligands to novel synthetic 

agents binders. Through this comparison, we also aim to identify emerging opportunities for 

improving the manufacturing of cells for tissue engineering and regenerative medicine. 

 

2. Cells of interest 

A list of clinically relevant cell products is provided in Figure 3. The isolation of 

erythrocytes is a prerequisite for estimating erythrocyte aging [39] and diagnosing conditions 

such as anemia[40]  as well as vascular [41] and neurodegenerative diseases (Alzheimer’s 

and Parkinson’s) [12, 42]. Similarly, the isolation of lymphocytes is needed when assessing 

immune activation [13, 14], and as such, these cells are valuable in diagnosing or studying 

HIV infections [43], autoimmune diseases [44], post-operative infections [45], transplant 

rejection [46], and graft-versus-host disease (GvHD) [47, 48]. Mast cells (MCs) also 

represent a relevant class of targets, especially for studying innate immune response, as their 

specific role in vivo is still unclear; while often associated with allergic response, specifically 

anaphylaxis, and hypersensitivity reactions [49, 50], MCs have also been found to have 
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significant roles in a host’s defense against infections [51-53], angiogenesis during pregnancy 

[54], wound healing [55, 56], and autoimmune diseases [57]. Obtaining pure mast cell 

isolates has the potential to greatly improve our knowledge of disease mechanisms through 

the study of mast cell activation and immune response stimulation [58, 59]. Stem and 

progenitor cells are key ingredients in regenerative medicine and developmental biology, 

where they are used to reconstruct decellularized organs or to seed scaffolds for tissue and 

organ engineering [7, 9, 60]. For these reasons, stem cells have shown promise to help relieve 

the shortage of transplant organs [61, 62], to treat a number of conditions including macular 

degeneration [63] and Parkinson’s disease [64, 65], or as a therapy to repopulate heart tissue 

after myocardial infarction
 
[66, 67]. The isolation of stem cells involves an additional 

challenge compared to common cell purification, as undifferentiated cells must be removed 

prior to implantation to reduce the risk of teratoma formation [68, 69]; with an average of 10
7
 

- 10
9
 cells being required for a transplant [70, 71], even a 0.1% impurity level can result in a 

load of 10
6
 undifferentiated cells and teratoma formation [72, 73]. Several technologies have 

been developed for stem cell purification based on cell phenotype, including density-gradient 

separation [74, 75], fluorescence-activated cell sorting (FACS) [73, 76, 77], and metabolic 

selection [78]. Improved cell purification techniques would also be beneficial to detect and 

monitor circulating tumor cells [79, 80] and pathogen infections [81]. It is in fact particularly 

difficult to isolate circulating tumor cells due to their rarity (~ 1 circulating tumor cell per 10
8
 

red blood cells [82]). Additionally, cell separation techniques have been used to remove 

virus-infected cells from a patient to reduce a their overall viral load, as shown with malaria 

and hepatitis C [83-87]. Improved pathogen infection detection is not only beneficial for 

human related infections like those caused by HIV [88, 89], but also for the monitoring of 

food-related pathogens [90-92]. 
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3. Non-affinity methods 

Outside of affinity-based methods, cell separation is typically based on the physical properties of 

cells [93, 94]. These methods include density gradient centrifugation [95-100], dielectrophoresis 

[101-105], field-flow fractionation [102, 106-111], filtration [112-118], and elutriation centrifugation 

[119-123]. While useful for primary enrichment, these methods lack the specificity and resolution to 

achieve the levels of purity required for therapeutic and analytical applications [93, 94, 124, 125], 

and typically afford low yield for rare cell types [107, 126]. To overcome these limitations, affinity-

based methods have been implemented to improve recovery and purity [29, 127-131]. These rely on 

the specific recognition and binding of a cell surface target by a complementary molecule, called 

ligand, immobilized on a suitable carrier or surface [132, 133]. Protein ligands, especially antibodies, 

are currently the major workhorse in affinity-based cell purification, owing to their high capture 

strength and selectivity [134-137]. Biological ligands, however, are expensive and often suffer from 

low biochemical stability. Furthermore, their strong binding often makes the elution of cells 

challenging [133, 138, 139]. Thus, improvements in affinity methods are needed to enable 

therapeutic and analytical approaches that rely on consistent and cost-effective cell purification. The 

main channels of innovation are (i) the identification of novel and cost-effective synthetic affinity or 

pseudo-affinity ligands for replacing biological ligands, (ii) the development of purification formats 

that improve upon classic chromatography originally designed for protein purification, and (iii) the 

determination of unique surface receptors on the target cells that are appropriate for use as affinity 

targets to ensure high phenotypical purity of the cell product. 

 

4. Conventional Affinity Ligand Formats and Selection for Cell Separation 

In cell separations, ligands bind proteins that are ideally unique or overexpressed on the cell 

membrane of the population of interest. Three ligand families are currently the most 

employed in cell separation: antibodies, proteins, and lectins. More recently, however, novel 
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synthetic ligands have emerged as promising and cost-effective alternatives. In this section, 

conventional ligands used for cell separation are described as well as the desired ligand 

properties to achieve successful cell purification.   

4.1. Cell properties that determine the outcome of affinity-based cell purification. Cell 

sorting relies on the identification of a target receptor on either the cell phenotype of interest 

(positive cell enrichment) or the background cells (negative cell enrichment) [13, 14, 140, 

141], based on the target’s abundance on the cell surface, the heterogeneity of cell 

population, and the requirements for the final cell product [142-144]. Typically, each receptor 

forms only ~ 0.01% of the total membrane protein content [145, 146], although proteins 

considered of ―low-abundance‖ can be considerably less, as occurs on T or B lymphocytes 

[147]. The difficulty in identifying unique biomarkers for a target cell phenotype complicates 

the separation process and renders the assessment of cell product purity challenging [140, 

148-150]. Cell surface receptors may vary among donors and different tissues isolated from 

an individual donor [151-153]. This heterogeneity complicates the selection of target cell 

markers for affinity purification and has slowed considerably the study of certain cell classes. 

This has particularly been the case for mast-cells [51, 53, 56], whose purification by affinity 

is predominantly based on CD117 (c-Kit) targeting, although this receptor is not specific to 

mast cells and is present in many stem cell phenotypes [154]. For target cells featuring a 

particularly low surface density of unique receptors, negative enrichment is the preferred 

strategy [13, 155-157]. When low expression level is combined with low target cell 

abundance, microfluidic devices integrating negative selection strategies and physical 

separation methods (e.g., fluid, electric, or magnetic field) represent the technology of choice 

[156, 158-160]. 

 Additional considerations when selecting the target receptor come from the 

biochemical effects that occur upon receptor binding. External cell receptors are inherently 
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connected to cell metabolism, and ligand/receptor interactions can trigger undesired events 

such as internalization of the receptor, metabolic alteration, and even differentiation, in the 

case of stem cells [151, 152, 161].
 
Metabolic changes caused by affinity binding have been 

observed on mast cells enriched by targeting c-kit and FcεRI; while utilized for the positive 

selection of mast cells, these markers are crucial in IgE activation and are likely to impact 

cellular metabolism [58, 162]. 

 Ligand selection must also take into account both kinetic (kon and koff) and 

thermodynamic (KD) binding parameters [163-166]. Binding strength (KD) is crucial to 

ensure product purity, and, in the case of positive selection, to ensure that the target cells can 

be eluted from the affinity adsorbent. High-affinity ligands (low KD), while binding target 

cells specifically, make cell elution difficult, whereas low-affinity ligands (high KD), while 

allowing for easier elution, may not provide sufficient throughput. Thus, an ideal affinity 

ligand offers a balance between specific binding and effective elution [133]. Furthermore, 

quantifying cell adsorption in terms of KD only is not accurate, due to multi-point interactions 

between a target cell and multiple immobilized ligands known as avidity. Cell size, aspect 

ratio, and receptor density can be used to estimate the number of interactions per cell, and 

select an appropriate ligand density for a given value of KD [167, 168]. Finally, cell elution 

conditions are also crucial, as they strongly affect the viability of the recovered cells [138]. 

Elution can be achieved (i) non-specifically, by manipulating the salt concentration, pH, or 

temperature, or (ii) specifically, by using eluents that inhibit the ligand-cell interactions [139, 

140]. Non-specific methods can damage the cells, while specific methods tend to be 

expensive. To overcome these issues, specific elution methods using multivalent competitive 

inhibitors have been presented, which have shown increased cell recovery compared to 

monovalent inhibitors [139, 169]. 
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4.2. Antibodies. ―Immunoaffinity‖, i.e. the use of antibodies as affinity ligands (Figure 4), 

has been widely applied for cell purification, owing to the antibodies’ binding selectivity and 

ability to operate effectively under physiological conditions [93, 150, 170-175]. Following 

the seminal work by Peterson [176] and Wigzell [177, 178],
 
immunoaffinity has been 

employed to purify a wide variety of cells, including pathogenic bacteria [179], lymphocytes 

[180-185], mast and inflammatory cells [186, 187], neural cells [188, 189], and stem cells 

[190-192]. Recently, antibody fragments, such as Fabs and scFv, have been utilized as 

ligands in lieu of whole antibodies, as they possess the same binding activity while being 

produced more affordably [193, 194]. The strength of the interaction between the antibody 

and target protein, however, requires harsh elution conditions that may impact the cells’ 

viability. To address this issue, elution strategies have included competitive elution [181, 195, 

196] and cleavable linkers [197, 198]. 

4.3. Protein A/G. Another antibody-based method for cell isolation relies on Protein A and 

Protein G, two antibody-binding proteins expressed respectively by Staphylococcus aureus 

and group C and G Streptococcal bacteria [199]. In Protein A/G-based methods, a cell 

mixture is incubated with a receptor-specific antibody and passed through a Protein A/G-

linked adsorbent [200-205], where the antibody-labeled cells are selectively retained (Figure 

5). As the binding to Protein A/G is less impacted by steric hindrance than binding to 

immobilized antibodies directly, this variant of immunoaffinity cell chromatography is more 

efficient, and has been demonstrated in different formats, such as rosetting
 
[206, 207] and 

solid-phase chromatography [201, 208]. 

4.4. Protein and synthetic antigens. Antigens represent a broad class of ligands ranging from 

proteins to small synthetic molecules [93, 171, 209-211]. The use of antigenic ligands for 

purifying white cells has been pioneered by Wigzell et al., who isolated immunized mouse 

lymph node cells using glass and plastic beads functionalized with human serum albumin, 
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bovine serum albumin, and ovalbumin with yields between 60-95%, but poor enrichment 

(2.5-fold) [212]. Later work on lymphocytes has utilized enzyme-substrate interactions to 

isolate lymphocytes raised against enzyme antigens [213]. To purify enzyme-binding 

lymphocytes, Deluca et al. contacted white cells with the antigen enzyme and then exposed 

the solution to beads decorated with the enzyme’s substrate to specifically capture enzyme-

bound lymphocytes [210]. 

Synthetic antigens represent the first use of synthetic ligands for cell purification 

[214-217]. Truffa-Bachi et al. utilized haptens as antigens to stimulate an immune response, 

and subsequently as immobilized ligands to isolate white cells with anti-hapten activity [214, 

215]. This method addresses two main difficulties encountered in affinity-based capture, 

namely (i) non-specific binding of non-target cells and (ii) detaching cells from the adsorbent 

without impacting their viability. In this context, Haas et al. utilized a gelatin matrix 

containing dinitrophenyl as a ligand for adsorbing mouse spleen cells, demonstrating that 30-

fold enrichment and high viability could be achieved by melting the gelatin, providing for a 

gentle elution strategy [217]. 

4.5. Lectins. Lectins recognize specific carbohydrate sequences on glycoprotein cell surface 

markers and have been widely utilized for cell fractionation (Figure 6) [218]. Herz et al. 

have used soybean agglutinin as a ligand to isolate T lymphocytes from peripheral blood for 

use in the prevention of graft vs. host disease in bone marrow transplants [219]. Hellström et 

al. have shown how helix pomatia A hemagglutinin can bind T cells treated with 

neuraminidase by targeting surface carbohydrates [220]; because only a small fraction of B 

cells interact with helix pomatia hemagglutinin, this method represents an efficient strategy to 

separate T cells from B cells [221]. This work shows how lectins enable highly specific cell 

fractionation as they target post-translational modifications; helix pomatia hemagglutinin, in 

fact, is selective for human T cells over many B cells since T cells express proteins with 
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unique post-translational modifications [222]. Another major advantage of lectins is that cell 

elution can be triggered by mono- and disaccharides, which are harmless to cells [171]. In 

one instance, though, the elution of mouse thymocytes from concanavalin A was 

accomplished by cleaving the mercury-sulfur bond conjugating the lectin ligands from the 

chromatographic substrate using a short thiol, affording quantitative recovery and high cell 

viability [223]. 

 

5. Formats of affinity-based cell separation 

The principles of affinity purification have been applied in different ways for cell capture, 

depending on the source fluids and the required throughput [26, 100, 140, 150]. Cell-binding 

ligands have been immobilized onto solid substrates (chromatographic-like methods) [128] or 

polymer carriers (pseudo-/non-chromatographic method) [224] as well as magnetic particles 

(MACS) [225] and fluorescent markers (FACS) [226] that enable separation by an 

electromagnetic field. More recently, affinity ligands have been displayed on the channels of 

microfluidic devices. This latest frontier of cell separation offers higher resolution and holds 

great promise to expedite the clinical implementation of cellular therapies relying on rare cell 

types. 

5.1. Rosetting. Rosetting was the first isolation method to combine affinity with traditional 

density-gradient separation methods [150, 227-229]. In this technique, antigen-specific cells 

are incubated with antigen-coated erythrocytes, with which they form aggregates, called 

―rosettes‖, that are separated from non-rosetted cells by gradient centrifugation (Figure 7) 

[230]. Rosetting was first utilized to separate two mouse immune cell populations using 

sheep red blood cells [231]. Further work demonstrated that greater quantities and purities of 

rosette-forming antigen-specific cells could be obtained through avidin-biotin affinity [207], 

gradient density centrifugation [18], and in combination with magnetic fields [232]. Rosetting 
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is now routinely employed for purifying B and T lymphocytes and stem cells [233], with 

commercial products such as the RosetteSep
TM

 kit from StemCell, which offer good recovery 

and purity. 

5.2. Chromatography. Besides recovery and purity, other parameters, such as scalability and 

capacity, are critical to extend cell separation processes to clinical and commercial 

applications [128, 234]. In this context, cell affinity chromatography (CAC) shows great 

promise as a scalable technology [235], given its successful use in industrial protein 

purification [236, 237]. In CAC, cells are injected into a column packed with a porous 

material functionalized with affinity ligands. Target cells are retained by affinity on the 

chromatographic medium, while other components flow through (Figure 4). While similar to 

traditional protein chromatography, CAC faces unique challenges, due to the major 

differences between cells and proteins: cells are large, sensitive to shear stress [204], and 

possess a low diffusivity, which results in the need for convective transport to achieve 

sufficient interaction with the affinity surface [238-240]. Most importantly, high binding 

avidity requires harsh elution conditions to elute the cells from the chromatographic substrate 

[204, 241-243]. These challenges have highlighted the need for novel matrices that are 

tailored for chromatographic cell separations. 

 Computational modeling has been utilized to simulate cell interactions with affinity 

surfaces and guide the design of CAC substrates. Hammer et al. modeled the receptor-

mediated adhesion of cells to ligand-decorated surfaces [238] and found that adhesion mainly 

depends on (i) the cell receptor-ligand interaction, such as the bond formation rate (kon) and 

strength (KD),  and (ii) the fluid mechanical force, receptor mobility, and contact area [244-

250]. The model predicts two regimes governing CAC, i.e. a rate-controlled high-affinity 

regime and a low-affinity regime. Additional studies have expanded on CAC modeling [251] 

by implementing novel advanced analytical [252-254] and numerical
 

[244, 255-257] 
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approaches, understanding the effect of contact time and presence of inhibitors on cell 

adhesion [258], evaluating the effect of cell deformability on adhesion to surfaces [259, 260], 

and observing cell binding in microfluidic channels [261, 262]. A model based on ―cell 

rolling‖ behavior, inspired by leukocytes rolling against blood vessel walls [263, 264], was 

designed to increase the likelihood of ligand-receptor interactions [143, 145, 256, 265-268], 

reduce residence times, and secure the binding of cells with low surface marker density. 

 In place of traditional chromatographic substrates, alternatives such as fluidized bed 

CAC, cryogel CAC, and microfluidic CAC, have been proposed [234]. 

5.3. Fluidized Beds. Fluidized bed, or expanded-bed, affinity adsorption is frequently used to 

harvest from crude feedstocks [269]. A fluidized bed is comprised of porous particles coated 

with cell-binding affinity ligands that are agitated by an upward flow of fluid containing the 

target cells (Figure 8). The advantages of this technique over traditional CAC are (i) 

improved mass transfer and (ii) large inter-particle volume, and (iii) high surface area [221, 

270-272]. In one study, perfluorocarbon-based beads functionalized with lectin Concanavalin 

A were utilized to capture Saccaromyces cervisiae cells [271, 273]. The rapid adsorption 

kinetics enabled the capture of up to 6.8
.
10

9
 cells/mL, although elution was hindered by the 

―avidity‖ effect; to facilitate elution, ion-exchange groups were used in lieu of Concanavalin 

A [270, 271]. Fluidized bed separation was also utilized to isolate monocytes labeled with 

biotinylated antibodies from human peripheral blood using streptavidin beads [272]; cells 

were eluted using mechanical shear to a purity of 90%, yield of 77%, and viability of greater 

than 65%. While promising, fluidized beds suffer from limitations such as shear stress on 

cells, the need for large columns, long equilibration times, non-specific capture by the 

adsorbent base material, limited flow velocities, disengagement of absorbed cells from 

ligands [270], and fouling of the beads [274]. 
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5.4. Cryogels. Another alternative to traditional CAC is represented by monolithic cryogels 

[128, 234, 275, 276]. Cryogel matrices are prepared by gelation or polymerization at sub-zero 

temperatures to create a continuous macroporous structure that enables cell suspensions to 

flow through [275] (Figure 9). While initially designed for the separation of proteins [277], 

oligonucleotides [278], and plasmids [279], cryogels have been shown to be ideal for the 

purification of viruses [280], cell organelles [281], and whole cells
 
[234] owing to their (i) 

uniform and highly interconnected pores [128, 234], (ii) high channel width (>30 μm) that 

provides for efficient transport of cells between 2 and 15 µm [128, 282], (iii) efficient ligand 

conjugation [204, 205, 283], and (iv) high elasticity and hydrophilicity, which is particularly 

suited for mammalian cells [234, 284]. Finally, cryogels are attractive for large scale 

manufacturing as they exhibit high storage stability and have an extended life cycle [205, 

285].  The two main approaches for cell capture using cryogels are mechanical entrapment 

in the cryogel matrix and ligand-mediated binding [140, 275, 286, 287]. Ligands are 

conjugated to the cryogel either during or after cryogenic pore formation [281, 288]. A wide 

array of ligand formats [234, 285, 288] including antibodies [204, 205, 247, 289, 290], 

proteins [128, 204, 205, 286, 291], lectins, and synthetic ligands [290, 292-294]
 
have been 

incorporated into cryogels for the separation of lymphocyte cells [128, 204, 285], myeloid 

cells [276, 295], microbial cells like Staphylococcus aureus [290], Escherichia coli [286, 

291, 296], Bacillus halodurans [297], and yeast cells [286, 291]. Elution from cryogels can 

be achieved by traditional methods, as well as by elastic deformation and thermally-induced 

shrinkage of the matrix to ensure viability of the recovered cell product [291]. 

 

6. Pseudo-chromatographic systems 

6.1. Gel Affinity Separation. Among polymer-based media, gels are particularly attractive as 

single-use adsorbents for cell purification, as they can be disintegrated thermally or 
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enzymatically to release viable cells [298-305]. Haas and Layton developed antigen-coated 

gelatin layers to separate spleen cells with a 30-fold enrichment [217]; the bound 

lymphocytes were recovered by melting the gelatin. Because cell recovery could only be 

performed below gelatin’s melting temperature, Maoz et al. modified this process by 

including matrix-specific enzymes (i.e., collagenase) [303]; less than 5% of non-specific cells 

bound the gel, and non-adherent cells had significantly lower cytotoxicity than the bound 

cells, indicating that this method can specifically isolate functional T cells. Bröcker et al. 

developed antigen-functionalized gelatin for purifying T cells with up to 100-fold enrichment 

and purity of 80-90% [304]. Similarly, Webb et al. used an anti-mouse IgG for the selective 

capture of B cells [302]; on average 250 cells/mm
2
 attached to the immobilized antibody and 

the B cells had a minimum viability of 60%. 

6.2. Fiber-based affinity separations. Arrays of parallel hollow fibers have gained popularity 

as substrates for affinity purification of cells [306-313]. Fibers introduce a new component in 

cell adhesion, represented by the fiber’s cross-section geometry and flexibility [309, 312]. 

Fiber-based adsorbents are also attractive as they can be regenerated by washing at high shear 

[308, 312] and can be manufactured affordably at large-scale. The first use of fibers for cell 

isolation was published by Edelman et al. [306], who described the isolation of spleen cells 

from mice, immunized against Dnp38-bovine IgG, using nylon fibers coated with Dnp38-

BSA, tosyl30-BSA, and BSA antigens. The cells were detached mechanically, chemically, or 

competitively by incubation with inhibitors. While the eluted cells were up to 90% viable, 

significant non-specific binding occurred, which limited purity to 63-88%. To increase 

specificity, several authors have coupled antibodies and antigens to the luminal surface of 

cellulose hollow fiber modules. Pope et al. covalently attached goat anti-mouse antibodies to 

cellulose fibers to capture CD4
+
 lymphocytes, resulting in 63-99.9% depletion of the CD4

+
 

cells from the starting population [314]. Similarly, Nordon et al. covalently coupled an anti-
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CD34 antibody directly to the luminal surface of their system’s fibers to enrich CD34
+
 cells 

from mononuclear cells at 94% purity and 61% yield [307]. Other groups have developed 

fusion proteins comprising an antibody-binding domain and a fiber-binding domain for 

mediating the adhesion of antibody-labeled cells onto the fibers. Specifically, Craig et al. 

developed a fusion protein (―protein LG‖) that captured more than 90% of the antibody-

labeled CD34
+
 cells onto a cellulose fiber module [311]. The use of these chimeric proteins 

helps overcome problems associated with ligand conjugation to hollow fibers such as low 

yield, random orientation, and structural alterations or degradation caused by the conjugation 

chemistry [311]. Hollow fiber systems enable the implementation of novel unconventional 

elution techniques. For example, bound cells can be fractionated into populations with 

varying binding strength by adjusting the flow rate (shear elution) [312]. Bound cells can also 

be eluted if labile links (e.g., a disulfide bond) are included between the ligands and fibers.  

6.3. Affinity Membranes. Membranes are suitable substrates for affinity cell separations, as 

the balance between trans-membrane flux and fluid velocity parallel to the surface can be 

easily controlled to optimize adsorption and elution [138, 315]. Additionally, the pore size of 

membranes and surface shear can be varied to minimize concentration polarization and 

fouling, which is advantageous when processing high-density cell suspensions. In an early 

example, Mandrusov et al. used a cellophane dialysis membrane functionalized with goat 

anti-mouse immunoglobulin to purify mouse B-lymphocytes [316]: cells were eluted with a 

low pH buffer by trans-membrane diffusion, while a shear-producing flow was applied to 

promote detachment of the cells from the membrane and neutralization of the acidic 

environment. Feeding the elution buffer on the membrane side opposite to the bound cells 

afforded a 100% yield and 60% viability, indicating that a trans-membrane pH gradient is 

needed to elute cells effectively without decreasing cell viability. 
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Affinity membranes enable cell separation processes that employ bubble-induced cell 

detachment [317]. This technique is attractive as cells can be removed from adsorption 

surfaces without excessive dilution. Wang et al. utilized this method with tubular capillaries 

coated with antibodies to purify specific blood cell populations [127], obtaining 85.7% yield, 

97.6% purity, and 85.8% viability of CD4
+
 cells isolated from blood samples. Specifically, > 

90% of cells detached by bubble-induced elution, whereas compression and flow-induced 

elution resulted in 40-80% and 10-40% of cell detachment, respectively [317]. 

 Thermo-responsive polymers have also been integrated in membranes to improve 

elution. Specifically, a poly(N-isopropylacrylamide)-grafted polypropylene (PNIPAAm-g-

PP) membrane functionalized with monoclonal antibody ligands was developed for purifying 

CD80
+
 cells [318]. PNIPAAm displays a thermo-responsive phase transition at 32°C, where 

it switches from a hydrophilic to a hydrophobic state. At 37°C, antibody ligands adhere to the 

PNIPAAm-g-PP membranes by hydrophobic interaction, enabling the affinity capture of 

CD80
+
 cells; at 4°C, the IgG ligands detach from the PNIPAAm coating, thereby releasing 

the cells. The recovered cells were enriched from a 1:1 cell suspension to 72%, proving to be 

the first case of affinity-based capture of cells where temperature is used for cell elution. In a 

similar work, anti-CD34 antibodies were adsorbed onto a PNIPAAm-g-PP membrane and 

utilized to enrich CD34
+
 cells. The CD34

+
 cell concentration was increased from 50% in the 

feedstock to 85% in the eluate, and 95% of the recovered cells were viable [319]. 

 

7. Non-chromatographic affinity purification methods 

A variety of non-chromatographic techniques have been developed, such as two-phase 

separations, magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting 

(FACS) [148]. Two-phase separations employ polymeric materials often labeled with affinity 

ligands to drive the selective migration of cells into an aqueous phase (Figure 10). In MACS 
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and FACS, the target cells are tagged with labeled affinity ligands that enable separation; 

magnetic labels are used in MACS (Figure 11), while fluorescent labels are used in FACS 

(Figure 12). While MACS and two-phase separations isolate cells into bulk groups, FACS is 

unique in its ability to analyze and sort single cells, allowing for more precise cell separation. 

7.1. Affinity two-phase partitioning. Affinity two-phase partitioning is a powerful 

preparative method for cells, cell membranes and organelles, and viruses [140, 320-329]. 

Aqueous two-phase systems (ATPS) form when two polymers added to a water solution 

produce two non-miscible liquid layers, across which other components in solution migrate 

based on their differential affinity towards the polymers (Figure 10). To improve the 

selectivity of cell migration, affinity ligands such as lectins, antibodies, and receptor-specific 

molecules have been conjugated to the phase-forming polymers [330, 331]. Polyethylene 

glycol (PEG) and dextran are the most commonly utilized polymers for ATPS, with PEG 

being used as the ligand carrier and the dextran-rich phase acting as the receptacle for the 

bulk contaminants [325, 332-334]. Monoclonal antibodies coupled to PEG have been utilized 

for separating human red blood cells from sheep and rabbit blood cells, resulting in up to 

92% partitioning of the human red blood cells to the top phase [321, 335, 336]. Antibody-

PEG conjugates have also been used to purify hybridoma 16-3F cells from their parental NS-

1 cell line, resulting in 24% recovery and 80% purity [332]. 

 Two-phase affinity partitioning has flourished with the introduction of stimuli-

responsive polymers. Kumar et al. have utilized PNIPAM decorated with antibody ligands to 

separate CD34
+
 human acute myeloid leukemia KG-1 cells from Jurkat cells (immortalized 

human T lymphocytes) [337]. While more than 80% of the KG-1 cells were partitioned to the 

top phase, a small contamination of Jurkat cells was observed; however, incomplete recovery 

of the conjugates lowered the yield of KG-1 cells to 75% during subsequent use. In addition 

to antibodies, cell separation by two-phase partitioning has also been demonstrated with other 
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ligands, such as transferrin [323], synthetic dyes [338-342], and immobilized metals [333, 

343]. 

Owing to its biocompatibility, mild operating conditions, and scalability, ATPS is 

regarded as a high-potential technology for the recovery of cell targets for which the 

minimization of mechanical stimuli is critical (e.g., stem cells and neurons) [327, 328]. Sousa 

et al. used PEG800-dextran functionalized with anti-CD34 antibodies to separate and recover 

CD34
+
 stem cells from umbilical cord blood [325]. The CD34

+
 cells were enriched from a 

starting population of ~ 0.2% CD34
+
 cells to ~ 42% in the final population, and recovered 

with 81-95% yield; in contrast, with PEG alone, a cell enrichment of 13% and 2.3% recovery 

was achieved. Using a three-polymer (PEG, ficoll, dextran) system and an anti-CD133 

antibody, González‐González et al. recovered CD133
+
 stem cells from umbilical cord blood 

with a final recovery of 62% and 98% viability [328]. 

 A significant limitation of two-phase separations is the recurring presence of 

impurities in the top (product) phase. Accordingly, separations using ATPS generally result 

in lower purity than what is achieved using chromatographic technologies. Further work to 

improve ATPS separations, especially by increasing the partition preference of antibodies to 

a top clean phase, is considered a worthwhile effort to achieve a truly scalable process for cell 

separation. 

7.2. Magnetic-activated cell sorting (MACS). MACS is a relatively recent cell separation 

technology that employs affinity ligands conjugated to magnetic particles comprising an iron 

core coated by a hydrophilic shell to reduce non-specific binding (Figure 11) [344]. Upon 

incubating ligand-coated particles with a cell mixture, a magnetic field is applied to separate 

the target cells bound to the magnetic particles from the unbound cells [345]. Pioneered by 

Zborowski and co-workers [142, 346-350], MACS is now recognized for its speed of 

separation, with rates in the range of ~10
11

 cells/hour [100]. Recent developments enable 
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simultaneous separation of multiple cell types using magnetic field gradients [348, 351]
 
or by 

combination with microfluidic devices [352, 353]. The predominant MACS format is 

antibody-based, where target cells are either directly bound onto antibody-coated beads [225, 

347], or are labeled in solution with a primary antibody and subsequently captured onto beads 

coated with a secondary antibody [354, 355]. 

 Ligand immobilization techniques are highly dependent on the nature of the ligand. 

Methods for antibody immobilization to magnetic particles include covalent binding [356, 

357], streptavidin-mediated immobilization (specific for biotinylated antibodies) [358, 359], 

Protein A-/G-mediated immobilization [360], conjugation to boronic acid or hydrazinyl 

groups [360, 361], and oligo-dT coating [362]. Besides antibodies [225, 345, 363-365], other 

affinity ligands have been successfully utilized in MACS [366-375]. Herr et al. utilized DNA 

aptamers to capture acute leukemia cells from complex mixtures with a 40% recovery [371]. 

Magnetic nanoparticles coated with bis-Zn-DPA, a synthetic ligand that binds Gram-positive 

and Gram-negative bacteria, have been utilized for separating Escherichia coli from blood 

with complete bacterial clearance in two separation cycles [375]. This work has also 

demonstrated that nanoparticles outperform micrometer-scale particles in terms of binding 

capacity and kinetics, and separation output. 

The increasing relevance of immunomagnetic separation technology is demonstrated 

by the recent FDA approval of the CellSearch system, which can isolate circulating tumor 

cells using a epithelial cell-adhesion molecule (EpCAM) antibody [376-378]. 

7.3. Fluorescent-Activated Cell Sorting (FACS). In FACS, fluorescently-tagged ligands are 

utilized to individually sort cells using fluorescence and light scattering [379-381]. When 

injected into the sorter, the stream of cells tagged with fluorescent ligands is broken into 

droplets that contain a single cell; each droplet passes through an illumination detection zone, 

and a charge is placed onto any cell that meets the separation criteria. As the charged droplets 
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fall through electrostatic deflecting plates, they are sorted into different containers based on 

their charge (Figure 12). FACS has been extensively utilized for sorting therapeutic cell 

products, especially stem cells [29, 31, 382-384] and blood cells [385, 386]. FACS has 

gained popularity as it provides highly pure (>95%) cell populations and can sort at the single 

cell level due to the high sensitivity of fluorescence detection [100, 387]. FACS also allows 

population-averaged single cell data, as it can be used to efficiently perform high throughput 

cell sorting and counting [387]. Recent advances in fluorescent dyes and laser detectors allow 

researchers to simultaneously track multiple cell parameters [388, 389]. On the other hand, 

FACS requires the use of expensive equipment and suffers from limited throughput (~ 10
7
 

cells/hour) and long processing times (3-6 hours), which prevents its use in large scale 

manufacturing of therapeutic cells [380].  

Elements of MACS and FACS sorting can be combined in a method known as 

―ratcheting cytometry‖ to perform multicomponent purifications of specific subpopulations 

[390]. This method is frequently used for continuous and quantitative purification of T cell 

subsets for cell therapy manufacturing. Specifically, T cells from apheresis or peripheral 

blood mononuclear cell samples are magnetically labeled using magnetic particles featuring 

different iron oxide content and size, and antibody functionalization. As magnetic particles 

travel differently within the sorting cartridge based on their magnetization and size, cells 

specifically bound to a magnetic particle population can be isolated from other cells in the 

mixture [390]. Ratcheting cytometry also enables sorting cells based on differential levels of 

antigen, as this determines the number of magnetic particles bound to a cell. This method has 

been used to simultaneously isolate CD4 and CD8 T cells from a sample via labeling with 

antigen-specific magnetic particles [391]. 

 

8. Emerging Trends 
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Cell purification technology is rapidly evolving, owing to the introduction of novel target-

specific biorecognition moieties for capture (i.e., biological and synthetic ligands) and 

isolation formats (e.g., microfluidic devices). 

8.1. Microfluidic devices for cell separation. The latest frontier of CAC is represented by 

microfluidic devices that comprise sub-millimeter channels coated with affinity ligands (M-

CAC) [129, 131, 159, 392-396]. The high surface-area-to-volume ratio of microfluidic 

channels, enhanced by micro-fabricated structures with complex geometry, has enabled the 

capture of cells at extremely low concentrations by M-CACs [261, 392, 397-399]. M-CAC 

systems have been utilized to separate T- and B-lymphocytes at high purity (> 97%) from 

mixed suspensions [127, 175, 400]. To ensure binding specificity, the channels are often 

grafted with hydrophilic polymer brushes (e.g., PEG) or coated with hydrogels (e.g., alginate) 

functionalized with antibody ligands [401, 402]. Chang et al. have developed a M-CAC 

system coated with E-selectin IgG molecules to separate HL-60 and U-937 myeloid cells 

with purity greater than 70% and 200-fold enrichment [262]. M-CAC also enables the sorting 

and capture of multiple cell types from a complex mixture. Li et al. incorporated a 

pneumatic-actuated control layer into an affinity separation layer to create different antibody-

coated regions within the same channel [129]. Ramos cells were flown through anti-CD19- 

and anti-CD71- coated regions, with the anti-CD19 region having a capture density 2.44-fold 

higher than the anti-CD71 region. The authors also coated a second channel with two 

different antibodies targeting either Ramos or HuT 78 cells, allowing specific retention of the 

cells in their complementary region at greater than 90% purity. Lastly, a four-region 

antibody-coated device was developed for the simultaneous capture of three different cell 

lines in a single channel, thereby enabling multiple cell sorting. 

 Microfluidic devices coated with antibodies against specific cell markers have gathered 

considerable interest as tools for detecting rare tumor circulating cells (CTCs) [397, 403-405]. 
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Isolating CTCs from the bloodstream enables the detection, characterization, and monitoring of non-

hematological cancers [406], but is made extremely challenging by their low concentration (1 -100 

CTCs per mL of blood [82, 376-378, 407, 408]). Researchers have shown that microfluidic devices 

(CTC-Chip) containing an array of microposts functionalized with epithelial cell adhesion molecules 

(EpCAM) can capture CTCs [397]. Many attributes of the device have been explored to enhance CTC 

enrichment. Gleghorn et al. described how the geometry of the microposts can enhance CTC 

enrichment [398]. CTC-ligand binding has also been improved by introducing a high-throughput 

microfluidic device called “HB-Chip”, which mixes the blood cells by generating micro-vortices that 

increase the interactions between the target CTCs and the antibody-coated channels [406]. To 

increase binding sensitivity, Myung et al. developed high-avidity ligands by conjugating multiple 

EpCAM ligands to dendimers [409]. The combination of multivalent binding and cell rolling in the 

channels mediated by E-selectin granted high sensitivity and specificity towards CTCs. This work has 

led to a device, commercialized by Biocept, which employs streptavidin-coated microposts to 

capture CTCs tagged with biotinylated antibodies, followed by fluorescent microscopy-based 

detection and in situ cytogenic interrogation [399, 410]. Another approach for the isolation of CTCs 

is represented by negative enrichment (or negative selection) using microfluidic technologies [411], 

which takes advantage of the physical and biochemical properties of cells [412]. Unlike 

hematopoietic cells, which display the cell surface markers CD15 (granulocytes), CD66b 

(granulocytes) and CD45 (leukocytes), CTCs are CD15/45-negative. Accordingly, negative enrichment 

technologies feature microfluidic channels, nanoparticles, and micro-scale adsorbents functionalized 

with anti-CD15, anti-CD66b and, most commonly, anti-CD45 antibodies [155-157]. The affinity-based 

selection alone, however, is often not sufficient to achieve the desired enrichment factor, and must 

be complemented by size exclusion-based or fluid dynamic-based separation techniques [157, 158, 

160, 413, 414].  

Lastly, emerging technologies for droplet-based single cell analyses are flooding the 

contemporary literature landscape. While there is significant focus on droplet barcoding for 
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single cell sequencing and transcriptomics [415-418], some efforts are aimed at employing 

droplet-based technologies for human cell isolation, sorting, and studying biomolecular 

interactions [419-425]. An in-depth review of droplet-based cell analyses was recently 

provided by Huck et al. [426]. Briefly, the formation of water-in-oil plug flow in 

microfluidics can generate picoliter-sized droplets for carrying cells or other biomolecular 

residents, and these droplets can be generated in a highly repetitive and chemically-defined 

manner [427-430]. When employed for cell isolation and sorting, the physico-chemical 

properties of the droplet can be tuned to promote interaction with specific surface features of 

the microfluidic device, resulting in droplet isolation and sorting [431-435]; for example, the 

interfacial tension of the droplet can be made sensitive to pH causing the droplets to interact 

with the microfluidic channel’s surface [422]. The physico-chemical properties of the 

resident cell can also be made responsive, so that the droplet can be sorted via imaging and 

fluorescence-activated techniques [436-440].  

In regard to using these techniques for studying affinity-based chemistries, droplet 

microfluidics have been employed to screen drug and antibody binding by generating sub-

nanoliter reactors [441-444]. In one example, hybridoma cells secreting antibodies were 

individually co-encapsulated with a target cell in nanodroplets to select hybridoma clones 

expressing antibodies featuring affinity for the target cell [440]. While there have been 

limited studies of strictly affinity-based sorting via droplet microfluidics, based on the 

aforementioned examples there is an emerging lane of study for using droplet microfluidics 

for therapeutic antibody discovery, especially since the single-cell droplet approach is 

amenable to use with primary human plasma cells, which secrete antibodies. 

8.2. Novel Synthetic Ligands. A significant barrier to improving the affordability of cell 

products is represented by the cost of biological ligands [133]. While highly selective, 

proteins and antibodies are biochemically labile [445], and a complex engineering process is 
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required to discover viable ligands [446]. Further, they are generally characterized by high 

binding strength, which can trigger undesired intracellular signaling cascades upon binding 

and even cell death [447-449]. To overcome these limitations, synthetic ligands have been 

proposed to maintain targeted affinity while lowering binding strength to facilitate cell 

elution. In addition, synthetic ligands are biochemically stable and can be synthesized 

affordably at large scale. 

 Hormones are the first small molecules to ever be utilized as affinity ligands [450]. In 

particular, histamine [451, 452], catecholamines [453], and prostaglandins [454, 455] coupled 

to Sepharose beads have been used to separate 19S and 7S plaque-forming cells from the 

total spleen leukocyte population. The hormone-based adsorbents were able to capture 56% 

and 84% of the 19S and 7S plaque-forming cells respectively. Similarly, glycans (e.g., 

mannose) immobilized on Dowex resins have been utilized to separate E. coli K12 and 

Campylobacter jejuni NCTC 11168 cells with high yield (94–96%) and selectivity [456]. 

 Recent advances in selection technology have spurred the use of synthetic ligands 

with engineered affinity and selectivity for any target cell [133, 457-459]. Aptamers and 

peptides represent the main classes of synthetic ligands [449, 460-470]. Aptamers consist of 

single-stranded DNA or RNA molecules and have seen rising popularity in cell purification 

[469]. The development of these ligands is supported by a high-throughput screening method 

known as ―systematic evolution of ligands by exponential enrichment‖ (SELEX) [464, 471-

474]. Xu et al. have selectively captured three leukemia cell lines (CCL-119, Ramos cells, 

and Toledo cells) using a microfluidic device coated with cell line-specific aptamers, with up 

to 136-fold enrichment [475]. Aptamers have also been demonstrated as cell capture ligands 

in more traditional pseudo-chromatography applications, as described by Zhang et al., where 

aptamers coupled to a hydrogel bound and eluted target cells with a resulting viability of ~ 

99% [476]. Aptamers have also been successfully used in MACS applications [371, 372, 475, 
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477-480], microfluidic devices, and hydrogels, with reported capture efficiencies and cell 

purities at > 80% [131, 403, 481-483]. These case studies showcase the value of aptamers as 

cell capturing ligands. Nonetheless, some improvements are still needed, such as increasing 

binding selectivity to improve capture [484], tuning the binding strength to facilitate cell 

elution [485], and addressing safety concerns by implementing rigorous tests of 

biocompatibility [486].  

 Peptides have also emerged as robust and cost-effective alternatives to protein ligands 

[133]. Over the past two decades a number of selection techniques have been developed, 

ranging from the screening of biological and synthetic libraries in liquid or solid phase to in 

silico approaches, such as computational design and machine learning. This has resulted in a 

myriad of peptides targeting analytical and medically relevant target cells. Veleva et al. 

identified an angiogenic tumor-binding peptide via in vitro enrichment of a peptide library 

against peripheral blood outgrown endothelial cells followed by in vivo screening of the 

enriched library to identify tumor-binding peptides [487]. Similarly, Oyama and coworkers 

identified peptides from a phage library to bind human lung cancer cell lines and noted that 

the selected peptides were specific towards the target cancer cells without negative selection 

[461, 466]. In 2008, Choi et al. identified a Raji cell-targeting peptide as a model for Burkitt 

lymphoma cells with seemingly high specificity for these cells as determined by lack of 

binding to normal, non-cancerous B cells, peripheral blood cells, or other leukemia cells 

[488]. Wang et al. also utilized phage display to identify affinity peptides for imaging 

detection of human colorectal cancer cells (Caco-2); the specificity of the peptide was 

confirmed using negative-control cell lines HEK293, SGC-7901, and SMMC-7721 [489]. 

Peptide ligands have also been employed in a number of cell adhesion applications, which are 

of primary interest for cell separations. De et al. demonstrated the use of peptides in pathogen 

removal applications by isolating pancreatic beta-cells infected by Mycoplasma arginii from 
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healthy cells, showcasing a 10-fold reduction in the number of infected cells [490]. Success 

in separating different phenotypes of primary cells has also been shown in multiple cases by 

microcontact printing of tetrameric peptides in microfluidic devices. These have been used 

for the separation of osteoblasts from fibroblasts by Hasenbein and coworkers [491], or the 

fractionation and characterization of different human cell phenotypes by Murthy and 

coworkers [492-494].Peptide ligands have been discovered for a number of cell surface 

markers that identify analytically or therapeutically relevant cells, including CD-34 [495], 

CD-133 [496, 497], CD-38 [498], VCAM-1 [499-502], and Flt-3 [503, 504]. 

Large peptides, developed from non-antibody scaffolds, also represent a viable alternative 

for cell separation purposes. Our group has identified the first non-antibody binders for CD-117 by 

screening a yeast-display scaffold library against magnetized yeast cells expressing the extracellular 

domain of CD-117 [505]. Two nanobody mutants were identified with good affinity (i.e., 131 and 204 

nM) for CD-117. While binding of these mutants for CD-117 was only confirmed for yeast displayed 

CD-117, a combination of these ligands would likely enable the purification of phenotypically pure 

cells such as endothelial stem and progenitor cells (ESCs, HSC), and hematopoietic stem and 

progenitor cells (EPCs, HPCs) [506-517]. Additionally, the mid-nanomolar affinities of the nanobody 

ligands promote gentler compared to antibody ligands.  

 Peptide ligands can also be engineered to enable the control of cell binding and 

release upon exposure of biocompatible stimuli. To this end, stimuli-responsive monomers 

can be incorporated into the amino acid sequence, allowing the peptide to reversibly switch 

between a binding and a non-binding mode upon cooling, or exposure to light or a magnetic 

field (Figure 13). Our group, for example, has developed VCAM1-binding azobenzene-

cyclized peptides for the light-controlled labeling of endothelial progenitor cells [518]. Upon 

exposure to light, the ligands undergo a remarkable ~ 1300-fold variation in binding strength, 

which enables selective and stable light-controlled labeling of cells. Notably, modified 
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azobenzene linkers have been engineered to photo-switch in different wavelength windows, 

namely red, green, and blue (RGB) light [519-524]. Therefore, a combination of peptide 

ligands targeting different cell markers, whose binding/release is triggered at different 

wavelengths, could be used to produce and dynamically modify patterns of cells on solid 

substrates by exposure to sequences of red, green, or blue photo-patterns, for example using 

liquid crystal display light-emitting diodes (LCD-LED) arrays. 

 

9. Conclusions. Cell separation technologies have progressed steadily to meet the demands 

for basic research, diagnostic, and therapeutic applications, resulting in cell isolation methods 

that are more efficient, scalable, and dependable. Affinity-based approaches are now the most 

utilized, owing to their ability to achieve high purity. A wide variety of affinity-based 

approaches are available, ranging from traditional chromatographic to pseudo- and non-

chromatographic systems. Each system has advantages and disadvantages, as outlined in this 

work, which must be carefully considered when choosing a cell separation method. 

Microfluidic technologies represent the next frontier of cell manufacturing as they offer the 

capacity to perform multiple functions (mixing, counting, lysis, single cell analysis, etc.) in a 

single device. Advances in parallelization and scale-up hold great promise to overcome the 

low throughput of current devices and enable processing of large sample volumes. Further, 

the ability to integrate post-sorting molecular, cellular, and functional characterization 

furthers the appeal of using microfluidic devices for cell separation. 

 On the biorecognition front, affinity-based separations are shifting from protein and 

antibody ligands towards synthetic ligands. Biological ligands, in fact, while highly specific, 

are limited by their high cost and exceedingly strong binding. Synthetic ligands, on the other 

hand, can be synthesized affordably, at large scale, and with no batch-to-batch variability. 

The need to develop gentle cell elution conditions has stimulated the development of stimuli-
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responsive ligands, such as photo-switchable peptides, whose binding activity can be 

controlled by exposure to biocompatible stimuli. In this regard, further progress in the fields 

of in vitro and in silico selection methods is needed to expand the portfolio of peptides and 

aptamers with tailored affinity and binding mechanism for cellsurface markers. Further 

studies – both experimental and modeling – are also needed to understand the balance 

between affinity, multivalent binding due to expression level of surface markers, in order to 

optimize the balance between efficient cell capture and elution, ultimately enabling high 

recovery and bioactivity. 

 Currently, the major challenge for cell therapies and related clinical applications 

resides in achieving rapid, efficient, and affordable separation while minimizing costs and 

attaining the required purity, yield, and functionality of the cellular product. Membrane-based 

separations show exceptional potential in large-scale production, particularly in combination 

with novel cell-specific biorecognition moieties that ensure high recovery, purity, and 

bioactivity of the cell product. Owing to their high pore diameter and porosity, in fact, 

membranes enable processing high volumes of cell suspensions at high flow rates, thereby 

increasing throughput and minimizing processing time, which aids in maintaining the 

viability of the cell product. On the front of basic cellular research and personalized 

medicine, the continued identification of highly specific markers defining cell populations 

[525], combined with the advancements in integrating physical and affinity-based strategies 

in miniaturized devices, will be critical for the fruition of patient-specific cellular therapies. 
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Figure 1. Cell properties and corresponding purification techniques. 

 

Figure 2. Cell purification technologies. 
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Figure 3. Cell targets and their diagnostic or therapeutic applications. 
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Figure 4. Cell immunoaffinity chromatography. (A) Contacting a mixture of cells with the 

affinity substrate (e.g., an immunoaffinity adsorbent); (B) Removing the unbound cells by 

washing; (C) Eluting the target cell. 
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Figure 5. Protein A-based cell affinity chromatography. (A) Mixing the target cell and other 

cells with target-specific antibodies (e.g., an immunoaffinity adsorbent); (B) Removing the 

unbound cells by washing; (C) Eluting the target cell. 
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Figure 6. Lectin-based cell affinity chromatography. (A) Contacting a mixture of cells with 

the lectin substrate; (B) Removing the unbound cells by washing; (C) Eluting the target cells 

using a mixture of sugars. 
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Figure 7. Cell rosetting technique. (A) Contacting the target cell and other cells with bi-

specific (target cell and red blood cells) ligands resulting in (B) the formation of a complex; 

(C) Incubating the tagged target cells with red blood cells; (C) Procedure of cell purification 

by rosetting. 
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Figure 8. Cell purification by expanded bed chromatography. (A) Filling the column with 

beads; (B) Expanding the beads; (C) Loading the cell mixture; (D) Compacting and washing 

the beads; (E) Eluting the target cells 
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Figure 9. Process of cryogel production. 
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Figure 10. Cell purification by affinity-based aqueous two-phase partition. (A) Suspending 

the cell mixture; (B) Adding the affinity-polymer forming the second phase; (C) Mixing the 

two phases; (D) Allowing the two phases to separate and recovering the target cells in the 

top affinity phase. 
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Figure 11. Cell purification by MACS. (A) Contacting the cell mixture with ligand-

functionalized magnetic beads; (B) suspending the magnetic beads in the cell mixture; (C) 

Applying a magnetic field to isolate the magnetized target cells and remove all unbound 

cells; (D) Resuspend and wash the magnetized target cells; (E) Elute the target cells from the 

magnetic beads. 
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Figure 12. Cell purification by FACS. 
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Figure 13. Cell purification using stimuli-responsive peptide ligands. (A) Reversible photo- 

or thermo-switching of an azobenzene-cyclized peptide; (B) Principle of cell capture and 

release using stimuli-controlled cyclic peptides. 
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Table 1. Comparison of physical (non-affinity) and affinity-based cell separation techniques. 
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Statement of significance. Technologies for cell purification have served science, medicine, 

and industrial biotechnology and biomanufacturing for decades. This review presents a 

comprehensive survey of this field by highlighting the scope and relevance of all known 

methods for cell isolation, old and new alike. The first section covers the main classes of 

target cells and compares traditional non-affinity and affinity-based purification techniques, 

focusing on established ligands and chromatographic formats. The second section presents an 

excursus of affinity-based pseudo-chromatographic and non-chromatographic technologies, 

especially focusing on magnetic-activated cell sorting (MACS) and fluorescence-activated 

cell sorting (FACS). Finally, the third section presents an overview of new technologies and 

emerging trends, highlighting how the progress in chemical, material, and microfluidic 

sciences has opened new exciting avenues towards high-throughput and high-purity cell 

isolation processes. This review is designed to guide scientists and engineers in their choice 

of suitable cell purification techniques for research or bioprocessing needs. 

 

 

                  


